Brain plasticity during operation of brain-machine interfaces

Brain plasticity during operation of brain-machine interfaces Brain-machine interface (BMI) is a rapidly developing field of neuroscience. According to the results obtained by Mikhail Lebedev, Miguel Nicolelis and their colleagues (Lebedev et al. 2005), operation of BMIs results in incorporation of artificial actuators into brain representations. The scientists showed that modifications in neuronal representation of the monkey's hand and the actuator that was controlled by the monkey brain occurred in multiple cortical areas while the monkey operated a BMI. Inicialmente, monkeys moved the actuator by pushing a joystick. After the monkey started using its brain activity to directly control the actuator, the activity of individual neurons and neuronal populations became less representative of the animal's hand movements while representing the movements of the actuator. Presumably as a result of this adaptation, the animals could eventually stop moving their hands yet continue to operate the actuator. Así, during BMI control, cortical ensembles plastically adapt to represent behaviorally significant motor parameters, even if these are not associated with movements of the animal's own limb. Active laboratory groups include those of John Donoghue at Brown, Richard Andersen at Caltech, Krishna Shenoy at Stanford, Nicholas Hatsopoulos of University of Chicago, Andy Schwartz at Pitt, and Miguel Nicolelis at Duke. Donoghue and Nicolelis' groups have independently shown that animals can control external interfaces in tasks requiring feedback, with models based on activity of cortical neurons, and that animals can adaptively change their minds to make the models work better. Donoghue's group took the implants from Richard Normann's lab at Utah (el "Utah" array), and improved it by changing the insulation from polyimide to parylene-c, and commercialized it through the company Cyberkinetics. These efforts are the leading candidate for the first human trials on a broad scale for motor cortical implants to help quadriplegic or trapped patients communicate with the outside world. Related reading ^ Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., Nicolelis, M.A.L. (2005), Cortical ensemble adaptation to represent actuators controlled by a brain-machine interface. J. Neurosci. 25: 4681-4693 [1] Donoghue JP, "Connecting cortex to machines: recent advances in brain interfaces." Nat Neurosci., 2002 Nov;5 Suppl:1085-8. Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., Nicolelis, M.A.L. (2005) Cortical ensemble adaptation to represent actuators controlled by a brain machine interface. Monkeys Treat Robot Arm as Their Own Monkeys treat robot arm as bonus appendage Monkey See, Robotics Do This page uses Creative Commons Licensed content from Wikipedia (ver autores).

Si quieres conocer otros artículos parecidos a Brain plasticity during operation of brain-machine interfaces puedes visitar la categoría Computer brain interface.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Subir

we use own and third party cookies to improve user experience More information